5 research outputs found

    An Adaptive Modular Redundancy Technique to Self-regulate Availability, Area, and Energy Consumption in Mission-critical Applications

    Get PDF
    As reconfigurable devices\u27 capacities and the complexity of applications that use them increase, the need for self-reliance of deployed systems becomes increasingly prominent. A Sustainable Modular Adaptive Redundancy Technique (SMART) composed of a dual-layered organic system is proposed, analyzed, implemented, and experimentally evaluated. SMART relies upon a variety of self-regulating properties to control availability, energy consumption, and area used, in dynamically-changing environments that require high degree of adaptation. The hardware layer is implemented on a Xilinx Virtex-4 Field Programmable Gate Array (FPGA) to provide self-repair using a novel approach called a Reconfigurable Adaptive Redundancy System (RARS). The software layer supervises the organic activities within the FPGA and extends the self-healing capabilities through application-independent, intrinsic, evolutionary repair techniques to leverage the benefits of dynamic Partial Reconfiguration (PR). A SMART prototype is evaluated using a Sobel edge detection application. This prototype is shown to provide sustainability for stressful occurrences of transient and permanent fault injection procedures while still reducing energy consumption and area requirements. An Organic Genetic Algorithm (OGA) technique is shown capable of consistently repairing hard faults while maintaining correct edge detector outputs, by exploiting spatial redundancy in the reconfigurable hardware. A Monte Carlo driven Continuous Markov Time Chains (CTMC) simulation is conducted to compare SMART\u27s availability to industry-standard Triple Modular Technique (TMR) techniques. Based on nine use cases, parameterized with realistic fault and repair rates acquired from publically available sources, the results indicate that availability is significantly enhanced by the adoption of fast repair techniques targeting aging-related hard-faults. Under harsh environments, SMART is shown to improve system availability from 36.02% with lengthy repair techniques to 98.84% with fast ones. This value increases to five nines (99.9998%) under relatively more favorable conditions. Lastly, SMART is compared to twenty eight standard TMR benchmarks that are generated by the widely-accepted BL-TMR tools. Results show that in seven out of nine use cases, SMART is the recommended technique, with power savings ranging from 22% to 29%, and area savings ranging from 17% to 24%, while still maintaining the same level of availability

    The prevalence of waterpipe tobacco smoking among the general and specific populations: a systematic review

    Get PDF
    Abstract Background The objective of this study was to systematically review the medical literature for the prevalence of waterpipe tobacco use among the general and specific populations. Methods We electronically searched MEDLINE, EMBASE, and the ISI the Web of Science. We selected studies using a two-stage duplicate and independent screening process. We included cohort studies and cross sectional studies assessing the prevalence of use of waterpipe in either the general population or a specific population of interest. Two reviewers used a standardized and pilot tested form to collect data from each eligible study using a duplicate and independent screening process. We stratified the data analysis by country and by age group. The study was not restricted to a specific context. Results Of a total of 38 studies, only 4 were national surveys; the rest assessed specific populations. The highest prevalence of current waterpipe smoking was among school students across countries: the United States, especially among Arab Americans (12%-15%) the Arabic Gulf region (9%-16%), Estonia (21%), and Lebanon (25%). Similarly, the prevalence of current waterpipe smoking among university students was high in the Arabic Gulf region (6%), the United Kingdom (8%), the United States (10%), Syria (15%), Lebanon (28%), and Pakistan (33%). The prevalence of current waterpipe smoking among adults was the following: Pakistan (6%), Arabic Gulf region (4%-12%), Australia (11% in Arab speaking adults), Syria (9%-12%), and Lebanon (15%). Group waterpipe smoking was high in Lebanon (5%), and Egypt (11%-15%). In Lebanon, 5%-6% pregnant women reported smoking waterpipe during pregnancy. The studies were all cross-sectional and varied by how they reported waterpipe smoking. Conclusion While very few national surveys have been conducted, the prevalence of waterpipe smoking appears to be alarmingly high among school students and university students in Middle Eastern countries and among groups of Middle Eastern descent in Western countries

    Layered Approach to Intrinsic Evolvable Hardware using Direct Bitstream Manipulation of Virtex II Pro Devices

    No full text
    An integrated platform for fast genetic operators is presented to support intrinsic evolution on Xilinx Virtex II Pro Field Programmable Gate Arrays (FPGAs). Dynamic bitstream compilation is achieved by directly manipulating the bitstream using a layered design. Experimental results on a case study have shown that a full design as well as a full repair is achievable using this platform with an average time of 0.4 microseconds to perform the genetic mutation, 0.7 microseconds to perform the genetic crossover, and 5.6 milliseconds for one input pattern intrinsic evaluation. This represents a performance advantage of three orders of magnitude over JBITS and more than seven orders of magnitude over the Xilinx design tool driven flow for realizing intrinsic genetic operators on a Virtex II Pro device. © 2007 IEEE

    Performance Evaluation of Two Allocation Schemes for Combinatorial Group Testing Fault Isolation

    No full text
    Two fault isolation approaches based on Combinatorial Groups Testing (CGT) are presented. Although they both share the basic principle of grouping suspect resources into subgroups for testing, they differ in the allocation strategy used to achieve that grouping. Equal share CGT approach is analyzed first, results shown successful fault isolation in 85 % of the runs. An average of 3.65 groups and 362 test vectors were needed to isolate a single fault with an average of 2.95 discrepant outputs in each run. After that, Interleaved CGT approach is proposed along with analytical demonstration of its strengths and weaknesses. Finally, Future research framework is suggested to experimentally compare the two approaches.
    corecore